Detection of Phase Space Structures of the Cat Map with Lagrangian Descriptors


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The goal of this paper is to apply Lagrangian Descriptors (LDs), a technique based on Dynamical Systems Theory (DST) to reveal the phase space structures present in the well-known Arnold’s cat map. This discrete dynamical system, which represents a classical example of an Anosov diffeomorphism that is strongly mixing, will provide us with a benchmark model to test the performance of LDs and their capability to detect fixed points, periodic orbits and their stable and unstable manifolds present in chaotic maps. In this work we show, both from a theoretical and a numerical perspective, how LDs reveal the invariant manifolds of the periodic orbits of the cat map. The application of this methodology in this setting clearly illustrates the chaotic behavior of the cat map and highlights some technical numerical difficulties that arise in the identification of its phase space structures.

Sobre autores

Víctor García-Garrido

Departamento de Física y Matemáticas; Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 15

Autor responsável pela correspondência
Email: vjose.garcia@uah.es
Espanha, Alcalá de Henares, 28871; 28049, Madrid

Francisco Balibrea-Iniesta

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 15

Email: vjose.garcia@uah.es
Espanha, 28049, Madrid

Stephen Wiggins

School of Mathematics

Email: vjose.garcia@uah.es
Reino Unido da Grã-Bretanha e Irlanda do Norte, Bristol, BS8 1TW

Ana Mancho

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 15

Email: vjose.garcia@uah.es
Espanha, 28049, Madrid

Carlos Lopesino

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, C/Nicolás Cabrera 15

Email: vjose.garcia@uah.es
Espanha, 28049, Madrid

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018