Connecting orbits near the adiabatic limit of Lagrangian systems with turning points


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider a natural Lagrangian system defined on a complete Riemannian manifold being subjected to action of a time-periodic force field with potential U(q, t, ε) = f(εt)V(q) depending slowly on time. It is assumed that the factor f(τ) is periodic and vanishes at least at one point on the period. Let Xc denote a set of isolated critical points of V(x) at which V(x) distinguishes its maximum or minimum. In the adiabatic limit ε → 0 we prove the existence of a set Eh such that the system possesses a rich class of doubly asymptotic trajectories connecting points of Xc for εEh.

Sobre autores

Alexey Ivanov

Saint-Petersburg State University

Autor responsável pela correspondência
Email: a.v.ivanov@spbu.ru
Rússia, Universitetskaya nab. 7/9, Saint-Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017