The Hess–Appelrot case and quantization of the rotation number


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.

Sobre autores

Ivan Bizyaev

Steklov Mathematical Institute

Autor responsável pela correspondência
Email: bizaev_90@mail.ru
Rússia, ul. Gubkina 8, Moscow, 119991

Alexey Borisov

Steklov Mathematical Institute

Email: bizaev_90@mail.ru
Rússia, ul. Gubkina 8, Moscow, 119991

Ivan Mamaev

Steklov Mathematical Institute

Email: bizaev_90@mail.ru
Rússia, ul. Gubkina 8, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017