The Hess–Appelrot case and quantization of the rotation number
- Autores: Bizyaev I.A.1, Borisov A.V.1, Mamaev I.S.1
- 
							Afiliações: 
							- Steklov Mathematical Institute
 
- Edição: Volume 22, Nº 2 (2017)
- Páginas: 180-196
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218593
- DOI: https://doi.org/10.1134/S156035471702006X
- ID: 218593
Citar
Resumo
This paper is concerned with the Hess case in the Euler–Poisson equations and with its generalization on the pencil of Poisson brackets. It is shown that in this case the problem reduces to investigating the vector field on a torus and that the graph showing the dependence of the rotation number on parameters has horizontal segments (limit cycles) only for integer values of the rotation number. In addition, an example of a Hamiltonian system is given which possesses an invariant submanifold (similar to the Hess case), but on which the dependence of the rotation number on parameters is a Cantor ladder.
Palavras-chave
Sobre autores
Ivan Bizyaev
Steklov Mathematical Institute
							Autor responsável pela correspondência
							Email: bizaev_90@mail.ru
				                					                																			                												                	Rússia, 							ul. Gubkina 8, Moscow, 119991						
Alexey Borisov
Steklov Mathematical Institute
														Email: bizaev_90@mail.ru
				                					                																			                												                	Rússia, 							ul. Gubkina 8, Moscow, 119991						
Ivan Mamaev
Steklov Mathematical Institute
														Email: bizaev_90@mail.ru
				                					                																			                												                	Rússia, 							ul. Gubkina 8, Moscow, 119991						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					