Arnold diffusion for a complete family of perturbations
- Авторлар: Delshams A.1, Schaefer R.G.1
- 
							Мекемелер: 
							- Department de Matemàtiques
 
- Шығарылым: Том 22, № 1 (2017)
- Беттер: 78-108
- Бөлім: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 2
- URL: https://ogarev-online.ru/1560-3547/article/view/218563
- DOI: https://doi.org/10.1134/S1560354717010051
- ID: 218563
Дәйексөз келтіру
Аннотация
In this work we illustrate the Arnold diffusion in a concrete example — the a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom H(p, q, I, φ, s) = p2/2+ cos q − 1 + I2/2 + h(q, φ, s; ε) — proving that for any small periodic perturbation of the form h(q, φ, s; ε) = ε cos q (a00 + a10 cosφ + a01 cos s) (a10a01 ≠ 0) there is global instability for the action. For the proof we apply a geometrical mechanism based on the so-called scattering map. This work has the following structure: In the first stage, for a more restricted case (I* ~ π/2μ, μ = a10/a01), we use only one scattering map, with a special property: the existence of simple paths of diffusion called highways. Later, in the general case we combine a scattering map with the inner map (inner dynamics) to prove the more general result (the existence of instability for any μ). The bifurcations of the scattering map are also studied as a function of μ. Finally, we give an estimate for the time of diffusion, and we show that this time is primarily the time spent under the scattering map.
Негізгі сөздер
Авторлар туралы
Amadeu Delshams
Department de Matemàtiques
							Хат алмасуға жауапты Автор.
							Email: amadeu.delshams@upc.edu
				                					                																			                												                	Испания, 							Av. Diagonal 647, Barcelona, 08028						
Rodrigo Schaefer
Department de Matemàtiques
														Email: amadeu.delshams@upc.edu
				                					                																			                												                	Испания, 							Av. Diagonal 647, Barcelona, 08028						
Қосымша файлдар
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу  Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Тек жазылушылар үшін
		                                		                                        Тек жазылушылар үшін
		                                					