Noncommutative integrable systems on b-symplectic manifolds
- Autores: Kiesenhofer A.1, Miranda E.1,2
- 
							Afiliações: 
							- Department of Mathematics
- Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C
 
- Edição: Volume 21, Nº 6 (2016)
- Páginas: 643-659
- Seção: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://ogarev-online.ru/1560-3547/article/view/218401
- DOI: https://doi.org/10.1134/S1560354716060058
- ID: 218401
Citar
Resumo
In this paper we study noncommutative integrable systems on b-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering noncommutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and prove an action-angle theorem for noncommutative integrable systems on a b-symplectic manifold in a neighborhood of a Liouville torus inside the critical set of the Poisson structure associated to the b-symplectic structure.
Sobre autores
Anna Kiesenhofer
Department of Mathematics
							Autor responsável pela correspondência
							Email: anna.kiesenhofer@upc.edu
				                					                																			                												                	Espanha, 							Avinguda del Doctor Marañón 44–50, Barcelona						
Eva Miranda
Department of Mathematics; Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C
														Email: anna.kiesenhofer@upc.edu
				                					                																			                												                	Espanha, 							Avinguda del Doctor Marañón 44–50, Barcelona; Bellaterra, Barcelona, 08193						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					