Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorhisms
- Авторы: Grines V.Z.1, Malyshev D.S.1,2, Pochinka O.V.1, Zinina S.K.3
- 
							Учреждения: 
							- National Research University Higher School of Economics
- N. I. Lobachevsky State University of Nizhni Novgorod
- Ogarev Mordovia State University
 
- Выпуск: Том 21, № 2 (2016)
- Страницы: 189-203
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218251
- DOI: https://doi.org/10.1134/S1560354716020040
- ID: 218251
Цитировать
Аннотация
It is well known that the topological classification of structurally stable flows on surfaces as well as the topological classification of some multidimensional gradient-like systems can be reduced to a combinatorial problem of distinguishing graphs up to isomorphism. The isomorphism problem of general graphs obviously can be solved by a standard enumeration algorithm. However, an efficient algorithm (i. e., polynomial in the number of vertices) has not yet been developed for it, and the problem has not been proved to be intractable (i. e., NPcomplete). We give polynomial-time algorithms for recognition of the corresponding graphs for two gradient-like systems. Moreover, we present efficient algorithms for determining the orientability and the genus of the ambient surface. This result, in particular, sheds light on the classification of configurations that arise from simple, point-source potential-field models in efforts to determine the nature of the quiet-Sun magnetic field.
Об авторах
Vyacheslav Grines
National Research University Higher School of Economics
							Автор, ответственный за переписку.
							Email: vgrines@yandex.ru
				                					                																			                												                	Россия, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155						
Dmitry Malyshev
National Research University Higher School of Economics; N. I. Lobachevsky State University of Nizhni Novgorod
														Email: vgrines@yandex.ru
				                					                																			                												                	Россия, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155; ul. Gagarina 23, Nizhny Novgorod, 603950						
Olga Pochinka
National Research University Higher School of Economics
														Email: vgrines@yandex.ru
				                					                																			                												                	Россия, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155						
Svetlana Zinina
Ogarev Mordovia State University
														Email: vgrines@yandex.ru
				                					                																			                												                	Россия, 							ul. Bolshevistskaya 68, Saransk, 430005						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					