Efficient algorithms for the recognition of topologically conjugate gradient-like diffeomorhisms
- Autores: Grines V.Z.1, Malyshev D.S.1,2, Pochinka O.V.1, Zinina S.K.3
- 
							Afiliações: 
							- National Research University Higher School of Economics
- N. I. Lobachevsky State University of Nizhni Novgorod
- Ogarev Mordovia State University
 
- Edição: Volume 21, Nº 2 (2016)
- Páginas: 189-203
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218251
- DOI: https://doi.org/10.1134/S1560354716020040
- ID: 218251
Citar
Resumo
It is well known that the topological classification of structurally stable flows on surfaces as well as the topological classification of some multidimensional gradient-like systems can be reduced to a combinatorial problem of distinguishing graphs up to isomorphism. The isomorphism problem of general graphs obviously can be solved by a standard enumeration algorithm. However, an efficient algorithm (i. e., polynomial in the number of vertices) has not yet been developed for it, and the problem has not been proved to be intractable (i. e., NPcomplete). We give polynomial-time algorithms for recognition of the corresponding graphs for two gradient-like systems. Moreover, we present efficient algorithms for determining the orientability and the genus of the ambient surface. This result, in particular, sheds light on the classification of configurations that arise from simple, point-source potential-field models in efforts to determine the nature of the quiet-Sun magnetic field.
Sobre autores
Vyacheslav Grines
National Research University Higher School of Economics
							Autor responsável pela correspondência
							Email: vgrines@yandex.ru
				                					                																			                												                	Rússia, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155						
Dmitry Malyshev
National Research University Higher School of Economics; N. I. Lobachevsky State University of Nizhni Novgorod
														Email: vgrines@yandex.ru
				                					                																			                												                	Rússia, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155; ul. Gagarina 23, Nizhny Novgorod, 603950						
Olga Pochinka
National Research University Higher School of Economics
														Email: vgrines@yandex.ru
				                					                																			                												                	Rússia, 							ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155						
Svetlana Zinina
Ogarev Mordovia State University
														Email: vgrines@yandex.ru
				                					                																			                												                	Rússia, 							ul. Bolshevistskaya 68, Saransk, 430005						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					