Integrability of the n-dimensional Axially Symmetric Chaplygin Sphere
- Authors: García-Naranjo L.C.1
- 
							Affiliations: 
							- Departamento de Matemáticas y Mecánica
 
- Issue: Vol 24, No 5 (2019)
- Pages: 450-463
- Section: Sergey Chaplygin Memorial Issue
- URL: https://ogarev-online.ru/1560-3547/article/view/219365
- DOI: https://doi.org/10.1134/S1560354719050022
- ID: 219365
Cite item
Abstract
We consider the n-dimensional Chaplygin sphere under the assumption that the mass distribution of the sphere is axisymmetric. We prove that, for initial conditions whose angular momentum about the contact point is vertical, the dynamics is quasi-periodic. For n = 4 we perform the reduction by the associated SO(3) symmetry and show that the reduced system is integrable by the Euler-Jacobi theorem.
About the authors
Luis C. García-Naranjo
Departamento de Matemáticas y Mecánica
							Author for correspondence.
							Email: luis@mym.iimas.unam.mx
				                					                																			                												                	Mexico, 							Apdo. Postal 20-126, Col. San Ángel, Mexico City, 01000						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					