Local Integrability of Poincaré–Dulac Normal Forms


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider dynamical systems in Poincaré–Dulac normal form having an equilibrium at the origin, and give a sufficient condition for them to be integrable, and prove that it is necessary for their special integrability under some condition. Moreover, we show that they are integrable if their resonance degrees are 0 or 1 and that they may be nonintegrable if their resonance degrees are greater than 1, as in Birkhoff normal forms for Hamiltonian systems. We demonstrate the theoretical results for a normal form appearing in the codimension-two fold-Hopf bifurcation.

Sobre autores

Shogo Yamanaka

Department of Applied Mathematics and Physics, Graduate School of Informatics

Autor responsável pela correspondência
Email: s.yamanaka@amp.i.kyoto-u.ac.jp
Japão, Kyoto, 606 8501

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018