Local Integrability of Poincaré–Dulac Normal Forms
- Autores: Yamanaka S.1
- 
							Afiliações: 
							- Department of Applied Mathematics and Physics, Graduate School of Informatics
 
- Edição: Volume 23, Nº 7-8 (2018)
- Páginas: 933-947
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219209
- DOI: https://doi.org/10.1134/S1560354718070080
- ID: 219209
Citar
Resumo
We consider dynamical systems in Poincaré–Dulac normal form having an equilibrium at the origin, and give a sufficient condition for them to be integrable, and prove that it is necessary for their special integrability under some condition. Moreover, we show that they are integrable if their resonance degrees are 0 or 1 and that they may be nonintegrable if their resonance degrees are greater than 1, as in Birkhoff normal forms for Hamiltonian systems. We demonstrate the theoretical results for a normal form appearing in the codimension-two fold-Hopf bifurcation.
Palavras-chave
Sobre autores
Shogo Yamanaka
Department of Applied Mathematics and Physics, Graduate School of Informatics
							Autor responsável pela correspondência
							Email: s.yamanaka@amp.i.kyoto-u.ac.jp
				                					                																			                												                	Japão, 							Kyoto, 606 8501						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					