Embedding the Kepler Problem as a Surface of Revolution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Solutions of the planar Kepler problem with fixed energy h determine geodesics of the corresponding Jacobi–Maupertuis metric. This is a Riemannian metric on ℝ2 if h ⩾ 0 or on a disk D ⊂ ℝ2 if h < 0. The metric is singular at the origin (the collision singularity) and also on the boundary of the disk when h < 0. The Kepler problem and the corresponding metric are invariant under rotations of the plane and it is natural to wonder whether the metric can be realized as a surface of revolution in ℝ3 or some other simple space. In this note, we use elementary methods to study the geometry of the Kepler metric and the embedding problem. Embeddings of the metrics with h ⩾ 0 as surfaces of revolution in ℝ3 are constructed explicitly but no such embedding exists for h < 0 due to a problem near the boundary of the disk. We prove a theorem showing that the same problem occurs for every analytic central force potential. Returning to the Kepler metric, we rule out embeddings in the three-sphere or hyperbolic space, but succeed in constructing an embedding in four-dimensional Minkowski spacetime. Indeed, there are many such embeddings.

作者简介

Richard Moeckel

School of Mathematics

编辑信件的主要联系方式.
Email: rick@math.umn.edu
意大利, Minneapolis, MN, 55455

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018