On the Stability of Periodic Motions of an Autonomous Hamiltonian System in a Critical Case of the Fourth-order Resonance
- Авторы: Markeev A.P.1
- 
							Учреждения: 
							- Institute for Problems in Mechanics RAS
 
- Выпуск: Том 22, № 7 (2017)
- Страницы: 773-781
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218861
- DOI: https://doi.org/10.1134/S1560354717070012
- ID: 218861
Цитировать
Аннотация
The problem of orbital stability of a periodic motion of an autonomous two-degreeof- freedom Hamiltonian system is studied. The linearized equations of perturbed motion always have two real multipliers equal to one, because of the autonomy and the Hamiltonian structure of the system. The other two multipliers are assumed to be complex conjugate numbers with absolute values equal to one, and the system has no resonances up to third order inclusive, but has a fourth-order resonance. It is believed that this case is the critical one for the resonance, when the solution of the stability problem requires considering terms higher than the fourth degree in the series expansion of the Hamiltonian of the perturbed motion.
Using Lyapunov’s methods and KAM theory, sufficient conditions for stability and instability are obtained, which are represented in the form of inequalities depending on the coefficients of series expansion of the Hamiltonian up to the sixth degree inclusive.
Ключевые слова
Об авторах
Anatoly Markeev
Institute for Problems in Mechanics RAS
							Автор, ответственный за переписку.
							Email: markeev@ipmnet.ru
				                					                																			                												                	Россия, 							pr. Vernadskogo 101, str. 1, Moscow, 119526						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					