Regular and chaotic dynamics in the rubber model of a Chaplygin top


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper is concerned with the rolling motion of a dynamically asymmetric unbalanced ball (Chaplygin top) in a gravitational field on a plane under the assumption that there is no slipping and spinning at the point of contact. We give a description of strange attractors existing in the system and discuss in detail the scenario of how one of them arises via a sequence of period-doubling bifurcations. In addition, we analyze the dynamics of the system in absolute space and show that in the presence of strange attractors in the system the behavior of the point of contact considerably depends on the characteristics of the attractor and can be both chaotic and nearly quasi-periodic.

作者简介

Alexey Borisov

Udmurt State University

编辑信件的主要联系方式.
Email: borisov@rcd.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034

Alexey Kazakov

National Research University Higher School of Economics

Email: borisov@rcd.ru
俄罗斯联邦, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155

Elena Pivovarova

Udmurt State University

Email: borisov@rcd.ru
俄罗斯联邦, ul. Universitetskaya 1, Izhevsk, 426034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016