On the extendability of Noether’s integrals for orbifolds of constant negative curvature
- Авторы: Kozlov V.V.1
- 
							Учреждения: 
							- Steklov Mathematical Institute
 
- Выпуск: Том 21, № 7-8 (2016)
- Страницы: 821-831
- Раздел: Nonlinear Dynamics & Mobile Robotics
- URL: https://ogarev-online.ru/1560-3547/article/view/218468
- DOI: https://doi.org/10.1134/S1560354716070054
- ID: 218468
Цитировать
Аннотация
This paper is concerned with the problem of the integrable behavior of geodesics on homogeneous factors of the Lobachevsky plane with respect to Fuchsian groups (orbifolds). Locally the geodesic equations admit three independent Noether integrals linear in velocities (energy is a quadratic form of these integrals). However, when passing along closed cycles the Noether integrals undergo a linear substitution. Thus, the problem of integrability reduces to the search for functions that are invariant under these substitutions. If a Fuchsian group is Abelian, then there is a first integral linear in the velocity (and independent of the energy integral). Conversely, if a Fuchsian group contains noncommuting hyperbolic or parabolic elements, then the geodesic flow does not admit additional integrals in the form of a rational function of Noether integrals. We stress that this result holds also for noncompact orbifolds, when there is no ergodicity of the geodesic flow (since nonrecurrent geodesics can form a set of positive measure).
Ключевые слова
Об авторах
Valery Kozlov
Steklov Mathematical Institute
							Автор, ответственный за переписку.
							Email: kozlov@pran.ru
				                					                																			                												                	Россия, 							ul. Gubkina 8, Moscow, 119991						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					