Persistence of regular motions for nearly integrable Hamiltonian systems in the thermodynamic limit


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A review is given of the studies aimed at extending to the thermodynamic limit stability results of Nekhoroshev type for nearly integrable Hamiltonian systems. The physical relevance of such an extension, i. e., of proving the persistence of regular (or ordered) motions in that limit, is also discussed. This is made in connection both with the old Fermi–Pasta–Ulam problem, which gave origin to such discussions, and with the optical spectral lines, the existence of which was recently proven to be possible in classical models, just in virtue of such a persistence.

Sobre autores

Andrea Carati

Department of Mathematics

Autor responsável pela correspondência
Email: andrea.carati@unimi.it
Itália, Via Saldini 50, Milano, I-20133

Luigi Galgani

Department of Mathematics

Email: andrea.carati@unimi.it
Itália, Via Saldini 50, Milano, I-20133

Alberto Maiocchi

Department of Mathematics

Email: andrea.carati@unimi.it
Itália, Via Saldini 50, Milano, I-20133

Fabrizio Gangemi

DMMT

Email: andrea.carati@unimi.it
Itália, Viale Europa 11, Brescia, I-25123

Roberto Gangemi

DMMT

Email: andrea.carati@unimi.it
Itália, Viale Europa 11, Brescia, I-25123

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016