Persistence of regular motions for nearly integrable Hamiltonian systems in the thermodynamic limit


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A review is given of the studies aimed at extending to the thermodynamic limit stability results of Nekhoroshev type for nearly integrable Hamiltonian systems. The physical relevance of such an extension, i. e., of proving the persistence of regular (or ordered) motions in that limit, is also discussed. This is made in connection both with the old Fermi–Pasta–Ulam problem, which gave origin to such discussions, and with the optical spectral lines, the existence of which was recently proven to be possible in classical models, just in virtue of such a persistence.

Авторлар туралы

Andrea Carati

Department of Mathematics

Хат алмасуға жауапты Автор.
Email: andrea.carati@unimi.it
Италия, Via Saldini 50, Milano, I-20133

Luigi Galgani

Department of Mathematics

Email: andrea.carati@unimi.it
Италия, Via Saldini 50, Milano, I-20133

Alberto Maiocchi

Department of Mathematics

Email: andrea.carati@unimi.it
Италия, Via Saldini 50, Milano, I-20133

Fabrizio Gangemi

DMMT

Email: andrea.carati@unimi.it
Италия, Viale Europa 11, Brescia, I-25123

Roberto Gangemi

DMMT

Email: andrea.carati@unimi.it
Италия, Viale Europa 11, Brescia, I-25123

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016