Adiabatic invariants, diffusion and acceleration in rigid body dynamics
- 作者: Borisov A.V.1, Mamaev I.S.1
-
隶属关系:
- Steklov Mathematical Institute
- 期: 卷 21, 编号 2 (2016)
- 页面: 232-248
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218265
- DOI: https://doi.org/10.1134/S1560354716020064
- ID: 218265
如何引用文章
详细
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré–Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi’s acceleration).
作者简介
Alexey Borisov
Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: borisov@rcd.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
Ivan Mamaev
Steklov Mathematical Institute
Email: borisov@rcd.ru
俄罗斯联邦, ul. Gubkina 8, Moscow, 119991
补充文件
