Moser’s Quadratic, Symplectic Map
- 作者: Bäcker A.1,2, Meiss J.D.3
- 
							隶属关系: 
							- Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics
- Max-Planck-Institut für Physik komplexer Systeme
- Department of Applied Mathematics
 
- 期: 卷 23, 编号 6 (2018)
- 页面: 654-664
- 栏目: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219093
- DOI: https://doi.org/10.1134/S1560354718060023
- ID: 219093
如何引用文章
详细
In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none.
The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.
作者简介
Arnd Bäcker
Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics; Max-Planck-Institut für Physik komplexer Systeme
							编辑信件的主要联系方式.
							Email: arnd.baecker@tu-dresden.de
				                					                																			                												                	德国, 							Dresden, 01062; Nöthnitzer Strasse 38, Dresden, 01187						
James Meiss
Department of Applied Mathematics
														Email: arnd.baecker@tu-dresden.de
				                					                																			                												                	美国, 							Boulder, CO, 80309 0526						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					