Rational integrability of trigonometric polynomial potentials on the flat torus
- Autores: Combot T.1
- 
							Afiliações: 
							- Scuola Normale Superiore
 
- Edição: Volume 22, Nº 4 (2017)
- Páginas: 386-407
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218661
- DOI: https://doi.org/10.1134/S1560354717040049
- ID: 218661
Citar
Resumo
We consider a lattice ℒ ⊂ ℝn and a trigonometric potential V with frequencies k ∈ ℒ. We then prove a strong rational integrability condition on V, using the support of its Fourier transform. We then use this condition to prove that a real trigonometric polynomial potential is rationally integrable if and only if it separates up to rotation of the coordinates. Removing the real condition, we also make a classification of rationally integrable potentials in dimensions 2 and 3 and recover several integrable cases. After a complex change of variables, these potentials become real and correspond to generalized Toda integrable potentials. Moreover, along the proof, some of them with high-degree first integrals are explicitly integrated.
Palavras-chave
Sobre autores
Thierry Combot
Scuola Normale Superiore
							Autor responsável pela correspondência
							Email: thierry.combot@u-bourgogne.fr
				                					                																			                												                	Itália, 							Piazza CavalieriPisa, 56127						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					