Weak nonlinear asymptotic solutions for the fourth order analogue of the second Painlevé equation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the P22 equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays ϕ = \(\frac{2}{5}\)π(2n + 1) on the complex plane have been found by the isomonodromy deformations technique.

Sobre autores

Ilia Gaiur

Department of Applied Mathematics

Autor responsável pela correspondência
Email: IYGaur@mephi.ru
Rússia, Kashirskoe sh. 31, Moscow, 115409

Nikolay Kudryashov

Department of Applied Mathematics

Email: IYGaur@mephi.ru
Rússia, Kashirskoe sh. 31, Moscow, 115409

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017