Weak nonlinear asymptotic solutions for the fourth order analogue of the second Painlevé equation
- Autores: Gaiur I.Y.1, Kudryashov N.A.1
- 
							Afiliações: 
							- Department of Applied Mathematics
 
- Edição: Volume 22, Nº 3 (2017)
- Páginas: 266-271
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218626
- DOI: https://doi.org/10.1134/S1560354717030066
- ID: 218626
Citar
Resumo
The fourth-order analogue of the second Painlevé equation is considered. The monodromy manifold for a Lax pair associated with the P22 equation is constructed. The direct monodromy problem for the Lax pair is solved. Asymptotic solutions expressed via trigonometric functions in the Boutroux variables along the rays ϕ = \(\frac{2}{5}\)π(2n + 1) on the complex plane have been found by the isomonodromy deformations technique.
Sobre autores
Ilia Gaiur
Department of Applied Mathematics
							Autor responsável pela correspondência
							Email: IYGaur@mephi.ru
				                					                																			                												                	Rússia, 							Kashirskoe sh. 31, Moscow, 115409						
Nikolay Kudryashov
Department of Applied Mathematics
														Email: IYGaur@mephi.ru
				                					                																			                												                	Rússia, 							Kashirskoe sh. 31, Moscow, 115409						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					