Computing hyperbolic choreographies
- Autores: Montanelli H.1
- 
							Afiliações: 
							- Oxford University Mathematical Institute
 
- Edição: Volume 21, Nº 5 (2016)
- Páginas: 522-530
- Seção: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218354
- DOI: https://doi.org/10.1134/S1560354716050038
- ID: 218354
Citar
Resumo
An algorithm is presented for numerical computation of choreographies in spaces of constant negative curvature in a hyperbolic cotangent potential, extending the ideas given in a companion paper [14] for computing choreographies in the plane in a Newtonian potential and on a sphere in a cotangent potential. Following an idea of Diacu, Pérez-Chavela and Reyes Victoria [9], we apply stereographic projection and study the problem in the Poincaré disk. Using approximation by trigonometric polynomials and optimization methods with exact gradient and exact Hessian matrix, we find new choreographies, hyperbolic analogues of the ones presented in [14]. The algorithm proceeds in two phases: first BFGS quasi-Newton iteration to get close to a solution, then Newton iteration for high accuracy.
Sobre autores
Hadrien Montanelli
Oxford University Mathematical Institute
							Autor responsável pela correspondência
							Email: Hadrien.Montanelli@maths.ox.ac.uk
				                					                																			                												                	Reino Unido da Grã-Bretanha e Irlanda do Norte, 							Oxford, OX2 6GG						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					