Nonintegrability of Parametrically Forced Nonlinear Oscillators
- Авторы: Motonaga S.1, Yagasaki K.1
- 
							Учреждения: 
							- Department of Applied Mathematics and Physics, Graduate School of Informatics
 
- Выпуск: Том 23, № 3 (2018)
- Страницы: 291-303
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218975
- DOI: https://doi.org/10.1134/S156035471803005X
- ID: 218975
Цитировать
Аннотация
We discuss nonintegrability of parametrically forced nonlinear oscillators which are represented by second-order homogeneous differential equations with trigonometric coefficients and contain the Duffing and van der Pol oscillators as special cases. Specifically, we give sufficient conditions for their rational nonintegrability in the meaning of Bogoyavlenskij, using the Kovacic algorithm as well as an extension of the Morales–Ramis theory due to Ayoul and Zung. In application of the extended Morales–Ramis theory, for the associated variational equations, the identity components of their differential Galois groups are shown to be not commutative even if the differential Galois groups are triangularizable, i. e., they can be solved by quadratures. The obtained results are very general and reveal their rational nonintegrability for the wide class of parametrically forced nonlinear oscillators. We also give two examples for the van der Pol and Duffing oscillators to demonstrate our results.
Ключевые слова
Об авторах
Shoya Motonaga
Department of Applied Mathematics and Physics, Graduate School of Informatics
							Автор, ответственный за переписку.
							Email: mnaga@amp.i.kyoto-u.ac.jp
				                					                																			                												                	Япония, 							Kyoto, 606-8501						
Kazuyuki Yagasaki
Department of Applied Mathematics and Physics, Graduate School of Informatics
														Email: mnaga@amp.i.kyoto-u.ac.jp
				                					                																			                												                	Япония, 							Kyoto, 606-8501						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					