An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane
- Авторы: Bizyaev I.A.1, Borisov A.V.1, Mamaev I.S.1
-
Учреждения:
- Steklov Mathematical Institute
- Выпуск: Том 23, № 6 (2018)
- Страницы: 665-684
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219099
- DOI: https://doi.org/10.1134/S1560354718060035
- ID: 219099
Цитировать
Аннотация
This paper addresses the problem of an inhomogeneous disk rolling on a horizontal plane. This problem is considered within the framework of a nonholonomic model in which there is no slipping and no spinning at the point of contact (the projection of the angular velocity of the disk onto the normal to the plane is zero). The configuration space of the system of interest contains singular submanifolds which correspond to the fall of the disk and in which the equations of motion have a singularity. Using the theory of normal hyperbolic manifolds, it is proved that the measure of trajectories leading to the fall of the disk is zero.
Об авторах
Ivan Bizyaev
Steklov Mathematical Institute
Автор, ответственный за переписку.
Email: bizaev_90@mail.ru
Россия, ul. Gubkina 8, Moscow, 119991
Alexey Borisov
Steklov Mathematical Institute
Email: bizaev_90@mail.ru
Россия, ul. Gubkina 8, Moscow, 119991
Ivan Mamaev
Steklov Mathematical Institute
Email: bizaev_90@mail.ru
Россия, ul. Gubkina 8, Moscow, 119991
Дополнительные файлы
