Complete Set of Invariants for a Bykov Attractor
- Authors: Carvalho M.1, Rodrigues A.P.1
-
Affiliations:
- Centro de Matemática da Universidade do Porto
- Issue: Vol 23, No 3 (2018)
- Pages: 227-247
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218959
- DOI: https://doi.org/10.1134/S1560354718030012
- ID: 218959
Cite item
Abstract
In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behavior and, from the asymptotic properties of these nonconverging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.
About the authors
Maria Carvalho
Centro de Matemática da Universidade do Porto
Author for correspondence.
Email: mpcarval@fc.up.pt
Portugal, Rua do Campo Alegre 687, Porto, 4169-007
Alexandre P. Rodrigues
Centro de Matemática da Universidade do Porto
Email: mpcarval@fc.up.pt
Portugal, Rua do Campo Alegre 687, Porto, 4169-007
Supplementary files
