Persistence Properties of Normally Hyperbolic Tori
- Authors: Broer H.1, Hanßmann H.2, Wagener F.3
-
Affiliations:
- Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen
- Mathematisch Instituut
- Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of Economics
- Issue: Vol 23, No 2 (2018)
- Pages: 212-225
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218954
- DOI: https://doi.org/10.1134/S1560354718020065
- ID: 218954
Cite item
Abstract
Near-resonances between frequencies notoriously lead to small denominators when trying to prove persistence of invariant tori carrying quasi-periodic motion. In dissipative systems external parameters detuning the frequencies are needed so that Diophantine conditions can be formulated, which allow to solve the homological equation that yields a conjugacy between perturbed and unperturbed quasi-periodic tori. The parameter values for which the Diophantine conditions are not fulfilled form so-called resonance gaps. Normal hyperbolicity can guarantee invariance of the perturbed tori, if not their quasi-periodicity, for larger parameter ranges. For a 1-dimensional parameter space this allows to close almost all resonance gaps.
About the authors
Henk Broer
Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen
Author for correspondence.
Email: h.w.broer@rug.nl
Netherlands, Groningen, AG, 9747
Heinz Hanßmann
Mathematisch Instituut
Email: h.w.broer@rug.nl
Netherlands, Utrecht, TA, 3508
Florian Wagener
Center for Nonlinear Dynamics in Economics and Finance (CeNDEF) Amsterdam School of Economics
Email: h.w.broer@rug.nl
Netherlands, Amsterdam, NJ, 1001
Supplementary files
