Global Properties of Kovalevskaya Exponents
- Авторы: Maciejewski A.J.1, Przybylska M.2
-
Учреждения:
- Janusz Gil Institute of Astronomy
- Institute of Physics
- Выпуск: Том 22, № 7 (2017)
- Страницы: 840-850
- Раздел: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218880
- DOI: https://doi.org/10.1134/S1560354717070061
- ID: 218880
Цитировать
Аннотация
This paper contains a collection of properties of Kovalevskaya exponents which are eigenvalues of a linearization matrix of weighted homogeneous nonlinear systems along certain straight-line particular solutions. Relations in the form of linear combinations of Kovalevskaya exponents with nonnegative integers related to the presence of first integrals of the weighted homogeneous nonlinear systems have been known for a long time. As a new result other nonlinear relations between Kovalevskaya exponents calculated on all straight-line particular solutions are presented. They were obtained by an application of the Euler–Jacobi–Kronecker formula specified to an appropriate n-form in a certain weighted homogeneous projective space.
Ключевые слова
Об авторах
Andrzej Maciejewski
Janusz Gil Institute of Astronomy
Автор, ответственный за переписку.
Email: a.maciejewski@ia.uz.zgora.pl
Польша, ul. Licealna 9, Zielona Góra, 65-417
Maria Przybylska
Institute of Physics
Email: a.maciejewski@ia.uz.zgora.pl
Польша, ul. Licealna 9, Zielona Góra, PL-65–417
Дополнительные файлы
