Nonuniform exponential dichotomies and Lyapunov functions
- Authors: Barreira L.1, Dragičević D.2, Valls C.1
-
Affiliations:
- Departamento de Matemática, Instituto Superior Técnico
- School of Mathematics and Statistics
- Issue: Vol 22, No 3 (2017)
- Pages: 197-209
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218598
- DOI: https://doi.org/10.1134/S1560354717030017
- ID: 218598
Cite item
Abstract
For the nonautonomous dynamics defined by a sequence of bounded linear operators acting on an arbitrary Hilbert space, we obtain a characterization of the notion of a nonuniform exponential dichotomy in terms of quadratic Lyapunov sequences. We emphasize that, in sharp contrast with previous results, we consider the general case of possibly noninvertible linear operators, thus requiring only the invertibility along the unstable direction. As an application, we give a simple proof of the robustness of a nonuniform exponential dichotomy under sufficiently small linear perturbations.
About the authors
Luis Barreira
Departamento de Matemática, Instituto Superior Técnico
Author for correspondence.
Email: barreira@math.tecnico.ulisboa.pt
Portugal, Lisboa, 1049-001
Davor Dragičević
School of Mathematics and Statistics
Email: barreira@math.tecnico.ulisboa.pt
Australia, Sydney, NSW, 2052
Claudia Valls
Departamento de Matemática, Instituto Superior Técnico
Email: barreira@math.tecnico.ulisboa.pt
Portugal, Lisboa, 1049-001
Supplementary files
