Nekhoroshev’s approach to Hamiltonian monodromy
- Авторлар: Sadovskí D.A.1
-
Мекемелер:
- Département de physique
- Шығарылым: Том 21, № 6 (2016)
- Беттер: 720-758
- Бөлім: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://ogarev-online.ru/1560-3547/article/view/218437
- DOI: https://doi.org/10.1134/S1560354716060113
- ID: 218437
Дәйексөз келтіру
Аннотация
Using the hyperbolic circular billiard, introduced in [31] by Delos et al. as possibly the simplest system with Hamiltonian monodromy, we illustrate the method developed by N. N. Nekhoroshev and coauthors [48] to uncover this phenomenon. Nekhoroshev’s very original geometric approach reflects his profound insight into Hamiltonian monodromy as a general topological property of fibrations. We take advantage of the possibility of having closed form elementary function expressions for all quantities in our system in order to provide the most explicit and detailed explanation of Hamiltonian monodromy and its relation to similar phenomena in other domains.
Негізгі сөздер
Авторлар туралы
Dmitrií Sadovskí
Département de physique
Хат алмасуға жауапты Автор.
Email: sadovski@univ-littoral.fr
Франция, Dunkerque, 59140
Қосымша файлдар
