Poisson brackets of mappings obtained as (q,−p) reductions of lattice equations
- Authors: Tran D.T.1, van der Kamp P.H.2, Quispel G.R.2
-
Affiliations:
- School of Mathematics and Statistics
- Department of Mathematics and Statistics
- Issue: Vol 21, No 6 (2016)
- Pages: 682-696
- Section: On the 70th Birthday of Nikolai N. Nekhoroshev Special Memorial Issue. Part 1
- URL: https://ogarev-online.ru/1560-3547/article/view/218419
- DOI: https://doi.org/10.1134/S1560354716060083
- ID: 218419
Cite item
Abstract
In this paper, we present Poisson brackets of certain classes of mappings obtained as general periodic reductions of integrable lattice equations. The Poisson brackets are derived from a Lagrangian, using the so-called Ostrogradsky transformation. The (q,−p) reductions are (p + q)-dimensional maps and explicit Poisson brackets for such reductions of the discrete KdV equation, the discrete Lotka–Volterra equation, and the discrete Liouville equation are included. Lax representations of these equations can be used to construct sufficiently many integrals for the reductions. As examples we show that the (3,−2) reductions of the integrable partial difference equations are Liouville integrable in their own right.
Keywords
About the authors
Dinh T. Tran
School of Mathematics and Statistics
Author for correspondence.
Email: T.D.Tran@UNSW.edu.au
Australia, Sydney, NSW, 2052
Peter H. van der Kamp
Department of Mathematics and Statistics
Email: T.D.Tran@UNSW.edu.au
Australia, Bundoora, VIC, 3086
G. R. W. Quispel
Department of Mathematics and Statistics
Email: T.D.Tran@UNSW.edu.au
Australia, Bundoora, VIC, 3086
Supplementary files
