Convergence of the Newton–Kurchatov Method Under Weak Conditions
- 作者: Shakhno S.M.1, Yarmola H.P.1
-
隶属关系:
- I. Franko Lviv National University
- 期: 卷 243, 编号 1 (2019)
- 页面: 1-10
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/243051
- DOI: https://doi.org/10.1007/s10958-019-04521-5
- ID: 243051
如何引用文章
详细
We study the semilocal convergence of the combined Newton–Kurchatov method to a locally unique solution of the nonlinear equation under weak conditions imposed on the derivatives and first-order divided differences. The radius of the ball of convergence is established and the rate of convergence of the method is estimated. As a special case of these conditions, we consider the classical Lipschitz conditions.
作者简介
S. Shakhno
I. Franko Lviv National University
编辑信件的主要联系方式.
Email: melissa.delgado@springer.com
乌克兰, Lviv
H. Yarmola
I. Franko Lviv National University
Email: melissa.delgado@springer.com
乌克兰, Lviv
补充文件
