Convergence of the Newton–Kurchatov Method Under Weak Conditions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the semilocal convergence of the combined Newton–Kurchatov method to a locally unique solution of the nonlinear equation under weak conditions imposed on the derivatives and first-order divided differences. The radius of the ball of convergence is established and the rate of convergence of the method is estimated. As a special case of these conditions, we consider the classical Lipschitz conditions.

作者简介

S. Shakhno

I. Franko Lviv National University

编辑信件的主要联系方式.
Email: melissa.delgado@springer.com
乌克兰, Lviv

H. Yarmola

I. Franko Lviv National University

Email: melissa.delgado@springer.com
乌克兰, Lviv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019