Convergence of the Newton–Kurchatov Method Under Weak Conditions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the semilocal convergence of the combined Newton–Kurchatov method to a locally unique solution of the nonlinear equation under weak conditions imposed on the derivatives and first-order divided differences. The radius of the ball of convergence is established and the rate of convergence of the method is estimated. As a special case of these conditions, we consider the classical Lipschitz conditions.

Sobre autores

S. Shakhno

I. Franko Lviv National University

Autor responsável pela correspondência
Email: melissa.delgado@springer.com
Ucrânia, Lviv

H. Yarmola

I. Franko Lviv National University

Email: melissa.delgado@springer.com
Ucrânia, Lviv

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019