Convergence of the Newton–Kurchatov Method Under Weak Conditions
- Autores: Shakhno S.M.1, Yarmola H.P.1
-
Afiliações:
- I. Franko Lviv National University
- Edição: Volume 243, Nº 1 (2019)
- Páginas: 1-10
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/243051
- DOI: https://doi.org/10.1007/s10958-019-04521-5
- ID: 243051
Citar
Resumo
We study the semilocal convergence of the combined Newton–Kurchatov method to a locally unique solution of the nonlinear equation under weak conditions imposed on the derivatives and first-order divided differences. The radius of the ball of convergence is established and the rate of convergence of the method is estimated. As a special case of these conditions, we consider the classical Lipschitz conditions.
Sobre autores
S. Shakhno
I. Franko Lviv National University
Autor responsável pela correspondência
Email: melissa.delgado@springer.com
Ucrânia, Lviv
H. Yarmola
I. Franko Lviv National University
Email: melissa.delgado@springer.com
Ucrânia, Lviv
Arquivos suplementares
