Double Cosets of Stabilizers of Totally Isotropic Subspaces in a Special Unitary Group II


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In 2016, the authors considered the decomposition \( \mathrm{SU}\left(D,h\right)=\underset{i}{\cup }{P}_u{\gamma}_i{P}_{\upsilon } \), where SU(D, h) is a special unitary group over a division algebra D with involution, h is a symmetric or skew-symmetric nondegenerate Hermitian form, and Pu, Pυ are stabilizers of totally isotropic subspaces of the unitary space. Since Γ = SU(D, h) is a point group of a classical algebraic group \( \tilde{\Gamma} \), there is the “order of adherence” on the set of double cosets {PuγiPυ}, which is induced by the Zariski topology on \( \tilde{\Gamma} \). In the present paper, the adherence of such double cosets is described for the cases where \( \tilde{\Gamma} \) is an orthogonal or a symplectic group (that is, for groups of types Br, Cr, Dr).

作者简介

N. Gordeev

Russian State Pedagogical University; St. Petersburg State University

编辑信件的主要联系方式.
Email: nickgordeev@mail.ru
俄罗斯联邦, St. Petersburg; St. Petersburg

U. Rehmann

Bielefeld University

Email: nickgordeev@mail.ru
德国, Bielefeld

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019