Estimates for Order Statistics in Terms of Quantiles
- Авторлар: Litvak A.E.1, Tikhomirov K.2
-
Мекемелер:
- University of Alberta
- Princeton University
- Шығарылым: Том 238, № 4 (2019)
- Беттер: 523-529
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242553
- DOI: https://doi.org/10.1007/s10958-019-04254-5
- ID: 242553
Дәйексөз келтіру
Аннотация
Let X1, . . .,Xn be independent nonnegative random variables with cumulative distribution functions F1, F2, . . . , Fn satisfying certain (rather mild) conditions. We show that the median of kth smallest order statistic of the vector (X1, . . . , Xn) is equivalent to the quantile of order (k − 1/2)/n with respect to the averaged distribution \( F=\frac{1}{n}\sum \limits_{i=1}^n{F}_i \).
Авторлар туралы
A. Litvak
University of Alberta
Хат алмасуға жауапты Автор.
Email: aelitvak@gmail.com
Канада, Edmonton
K. Tikhomirov
Princeton University
Email: aelitvak@gmail.com
АҚШ, Princeton
Қосымша файлдар
