On Projectors to Subspaces of Vector-Valued Functions Subject to Conditions of the Divergence-Free Type


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study operators that project a vector-valued function υW1,2(Ω, ℝd) to subspaces formed by the condition that the divergence is orthogonal to a certain amount (finite or infinite) of test functions. The condition that the divergence is equal to zero almost everywhere presents the first (narrowest) limit case while the integral condition of zero mean divergence generates the other (widest) case. Estimates of the distance between υ and the respective projection on such a subspace are important for analysis of various mathematical models related to incompressible media problems (especially in the context of a posteriori error estimates. We establish different forms of such estimates, which contain only local constants associated with the stability (LBB) inequalities for subdomains. The approach developed in the paper also yields two-sided bounds of the inf-sup (LBB) constant.

作者简介

S. Repin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: repin@pdmi.ras.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018