On Projectors to Subspaces of Vector-Valued Functions Subject to Conditions of the Divergence-Free Type
- 作者: Repin S.1
-
隶属关系:
- St. Petersburg Department of V. A. Steklov Institute of Mathematics, Peter the Great St. Petersburg Polytechnic University
- 期: 卷 236, 编号 4 (2019)
- 页面: 430-445
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242242
- DOI: https://doi.org/10.1007/s10958-018-4123-3
- ID: 242242
如何引用文章
详细
We study operators that project a vector-valued function υ ∈ W1,2(Ω, ℝd) to subspaces formed by the condition that the divergence is orthogonal to a certain amount (finite or infinite) of test functions. The condition that the divergence is equal to zero almost everywhere presents the first (narrowest) limit case while the integral condition of zero mean divergence generates the other (widest) case. Estimates of the distance between υ and the respective projection on such a subspace are important for analysis of various mathematical models related to incompressible media problems (especially in the context of a posteriori error estimates. We establish different forms of such estimates, which contain only local constants associated with the stability (LBB) inequalities for subdomains. The approach developed in the paper also yields two-sided bounds of the inf-sup (LBB) constant.
作者简介
S. Repin
St. Petersburg Department of V. A. Steklov Institute of Mathematics, Peter the Great St. Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: repin@pdmi.ras.ru
俄罗斯联邦, St. Petersburg
补充文件
