Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 236, № 4 (2019)

Article

V. I. Smirnov’s Seminar is 70 Years Old!

Journal of Mathematical Sciences. 2019;236(4):377-378
pages 377-378 views

Convergence in the Hölder Space of the Solutions to Problems for Parabolic Equations with Two Small Parameters in Boundary Condition

Bizhanova G.

Аннотация

Multidimensional two-phase problem for the parabolic equations with two small parameters ε > 0 and κ > 0 at the leading terms in the conjugation condition is studied in the Hölder space. An estimate of the perturbed term, time derivative, is derived. It is proved that the solution to the problem converges as κ → 0 and ε > 0, ε → 0 and κ > 0, and ε = 0 and κ → 0 without loss of the smoothness of given functions.

Journal of Mathematical Sciences. 2019;236(4):379-398
pages 379-398 views

LlogL-Integrability of the Velocity Gradient for Stokes System with Drifts in L(BMO1)

Burczak J., Seregin G.

Аннотация

For any weak solution of the Stokes system with drifts in L(BMO−1), a reverse Hölder inequality and LlogL-higher integrability of the velocity gradients are proved.

Journal of Mathematical Sciences. 2019;236(4):399-412
pages 399-412 views

On the Spectra of Boundary Value Problems Generated by Some One-Dimensional Embedding Theorems

Minarsky A., Nazarov A.

Аннотация

The spectra of boundary value problems related to one-dimensional high order embedding theorems are considered. It is proved that for some orders, the eigenvalues corresponding to even eigenfunctions of different problems cannot coincide.

Journal of Mathematical Sciences. 2019;236(4):413-418
pages 413-418 views

The Volume Fraction of One of the Phases in Equilibrium Two-Phase Elastic Medium

Osmolovskii V.

Аннотация

The relationship between the volume fraction of one phase of an equilibrium two-phase medium and other characteristics of the equilibrium state is studied.

Journal of Mathematical Sciences. 2019;236(4):419-429
pages 419-429 views

On Projectors to Subspaces of Vector-Valued Functions Subject to Conditions of the Divergence-Free Type

Repin S.

Аннотация

We study operators that project a vector-valued function υW1,2(Ω, ℝd) to subspaces formed by the condition that the divergence is orthogonal to a certain amount (finite or infinite) of test functions. The condition that the divergence is equal to zero almost everywhere presents the first (narrowest) limit case while the integral condition of zero mean divergence generates the other (widest) case. Estimates of the distance between υ and the respective projection on such a subspace are important for analysis of various mathematical models related to incompressible media problems (especially in the context of a posteriori error estimates. We establish different forms of such estimates, which contain only local constants associated with the stability (LBB) inequalities for subdomains. The approach developed in the paper also yields two-sided bounds of the inf-sup (LBB) constant.

Journal of Mathematical Sciences. 2019;236(4):430-445
pages 430-445 views

Multiplicity of Positive Solutions to the Boundary-Value Problems for Fractional Laplacians

Ustinov N.

Аннотация

For the problem (−Δ)su=uq−1 in the annulus ΩR = BR+1 \ BR ∈ ℝn, a so-called “multiplicity effect” is established: for each N ∈ ℕ there exists R0 such that for all RR0 this problem has at least N different positive solutions. (−Δ)s in this problem stands either for Navier-type or for Dirichlet-type fractional Laplacian. Similar results were proved earlier for the equations with the usual Laplace operator and with the p-Laplacian operator.

Journal of Mathematical Sciences. 2019;236(4):446-460
pages 446-460 views

On the Local Smoothness of Some Class of Axially-Symmetric Solutions to the MHD Equations

Shilkin T.

Аннотация

A special class of weak axially-symmetric solutions to the MHD equations for which the velocity field has only poloidal component and the magnetic field is toroidal is considered. For such solutions a local regularity is proved. The global strong solvability of the initial boundary-value problem for the corresponding system in a cylindrical domain with non-slip boundary conditions for the velocity on the cylindrical surface is established as well.

Journal of Mathematical Sciences. 2019;236(4):461-475
pages 461-475 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».