Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study a class of evolutionary partial differential equations depending on a parameter τ (stemming from the problems of groundwater flows). The existence of an open interval ????0 of the parameter τ and of a function τ ⟼ Θ(τ), Θ: ????0 ⟼(0, + ∞), is proved with the property that any nonzero global solution u:ℝ+ × Ω → ℝ of the equation cannot remain nonnegative (nonpositive) throughout the set J × Ω; where J ⊂ ℝ+ is any interval whose length is greater than Θ (τ). In other words, these solutions are globally oscillatory and Θ (τ) is the uniform oscillatory time. The interval ????0 and the function Θ are explicitly determined.

作者简介

L. Herrmann

Institute of Technical Mathematics, Czech Technical University

编辑信件的主要联系方式.
Email: Leopold.Herrmann@fs.cvut.cz
捷克共和国, Karlovo nám. 13, Praha 2, 121 35

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018