Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study uniform approximation of real-valued functions f, f(∞) = 0, on ℝ+ and ℝ by real-valued simple partial fractions (the logarithmic derivatives of polynomials). We obtain a criterion for the best approximation on ℝ+ and ℝ in terms of the Chebyshev alternance. This criterion is similar to the known criterion on finite segments. For the problem of approximating odd functions on ℝ we construct an alternance criterion with a weakened condition on the poles of fractions. We present a criterion for the best approximation by simple partial fractions on ℝ+ and ℝ in terms of Kolmogorov. We prove analogs of the de la Vallee-Poussin alternation theorem.

作者简介

M. Komarov

A. G. and N. G. Stoletov Vladimir State University

编辑信件的主要联系方式.
Email: kami9@yandex.ru
俄罗斯联邦, 87, Gor’kogo St., Vladimir, 600000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018