Logarithmic Asymptotics of a Class of Mappings


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The asymptotic behavior of lower Q-homeomorphisms relative to a p-modulus in ℝn, n ≥ 2, at a point is studied. A number of logarithmic estimates for the lower limits under various conditions imposed on the function Q are obtained. Some applications of these results to the Orlicz–Sobolev classes \( {W}_{\mathrm{loc}}^{1,\varphi } \) in ℝn, n ≥ 3 under the Calderon-type condition imposed on the function φ and, in particular, to the Sobolev classes \( {W}_{\mathrm{loc}}^{1,p} \) for p > n – 1 are given. The example of a homeomorphism with finite distortion which shows the exactness of the found order of growth is constructed.

作者简介

Ruslan Salimov

Institute of Mathematics of the NAS of Ukraine

编辑信件的主要联系方式.
Email: ruslan623@yandex.ru
乌克兰, Kiev

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018