Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function
- 作者: Golubeva E.P.1
-
隶属关系:
- The Bonch-Bruevich St. Petersburg State University of Telecommunications
- 期: 卷 234, 编号 5 (2018)
- 页面: 595-597
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241955
- DOI: https://doi.org/10.1007/s10958-018-4030-7
- ID: 241955
如何引用文章
详细
The paper considers the function A(t) (0 ≤ t ≤ 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A′(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum.
作者简介
E. Golubeva
The Bonch-Bruevich St. Petersburg State University of Telecommunications
编辑信件的主要联系方式.
Email: elena_golubeva@mail.ru
俄罗斯联邦, St. Petersburg
补充文件
