Alternating Sums of Elements of Continued Fractions and the Minkowski Question Mark Function
- Авторлар: Golubeva E.P.1
-
Мекемелер:
- The Bonch-Bruevich St. Petersburg State University of Telecommunications
- Шығарылым: Том 234, № 5 (2018)
- Беттер: 595-597
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241955
- DOI: https://doi.org/10.1007/s10958-018-4030-7
- ID: 241955
Дәйексөз келтіру
Аннотация
The paper considers the function A(t) (0 ≤ t ≤ 1), related to the distribution of alternating sums of elements of continued fractions. The function A(t) possesses many properties similar to those of the Minkowski function ?(t). In particular, A(t) is continuous, satisfies similar functional equations, and A′(t) = 0 almost everywhere with respect to the Lebesgue measure. However, unlike ?(t), the function A(t) is not monotonically increasing. Moreover, on any subinterval of [1, 0], it has a sharp extremum.
Авторлар туралы
E. Golubeva
The Bonch-Bruevich St. Petersburg State University of Telecommunications
Хат алмасуға жауапты Автор.
Email: elena_golubeva@mail.ru
Ресей, St. Petersburg
Қосымша файлдар
