Regularity of a Boundary Point for the p(x)-Laplacian
- 作者: Alkhutov Y.A.1, Surnachev M.D.2
-
隶属关系:
- A. G. and N. G. Stoletov Vladimir State University
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- 期: 卷 232, 编号 3 (2018)
- 页面: 206-231
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241292
- DOI: https://doi.org/10.1007/s10958-018-3870-5
- ID: 241292
如何引用文章
详细
We study the behavior of solutions to the Dirichlet problem for the p(x)-Laplacian with a continuous boundary function. We prove the existence of a weak solution under the assumption that p is separated from 1 and ∞. We present a necessary and sufficient Wiener type condition for regularity of a boundary point provided that the exponent p has the logarithmic modulus of continuity at this point.
作者简介
Yu. Alkhutov
A. G. and N. G. Stoletov Vladimir State University
编辑信件的主要联系方式.
Email: yurij-alkhutov@yandex.ru
俄罗斯联邦, 87, Gor’kogo St., Vladimir, 600000
M. Surnachev
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: yurij-alkhutov@yandex.ru
俄罗斯联邦, 4, Miusskaya sq., Moscow, 125047
补充文件
