Regularity of a Boundary Point for the p(x)-Laplacian
- Авторлар: Alkhutov Y.A.1, Surnachev M.D.2
-
Мекемелер:
- A. G. and N. G. Stoletov Vladimir State University
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- Шығарылым: Том 232, № 3 (2018)
- Беттер: 206-231
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241292
- DOI: https://doi.org/10.1007/s10958-018-3870-5
- ID: 241292
Дәйексөз келтіру
Аннотация
We study the behavior of solutions to the Dirichlet problem for the p(x)-Laplacian with a continuous boundary function. We prove the existence of a weak solution under the assumption that p is separated from 1 and ∞. We present a necessary and sufficient Wiener type condition for regularity of a boundary point provided that the exponent p has the logarithmic modulus of continuity at this point.
Авторлар туралы
Yu. Alkhutov
A. G. and N. G. Stoletov Vladimir State University
Хат алмасуға жауапты Автор.
Email: yurij-alkhutov@yandex.ru
Ресей, 87, Gor’kogo St., Vladimir, 600000
M. Surnachev
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: yurij-alkhutov@yandex.ru
Ресей, 4, Miusskaya sq., Moscow, 125047
Қосымша файлдар
