Lower Bounds on the Number of Leaves in Spanning Trees


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(υ(G) − k − 2) + 2 where \( {\alpha}_{g,1}=\frac{\left[\frac{g+1}{2}\right]}{4\left[\frac{g+1}{2}\right]+1} \) and \( {\alpha}_{g,k}=\frac{1}{2k+2} \) for k ≥ 2. We present an infinite series of examples showing that all these bounds are tight.

作者简介

D. Karpov

St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University

编辑信件的主要联系方式.
Email: dvko@yandex.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018