Lower Bounds on the Number of Leaves in Spanning Trees
- 作者: Karpov D.V.1
-
隶属关系:
- St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
- 期: 卷 232, 编号 1 (2018)
- 页面: 36-43
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241259
- DOI: https://doi.org/10.1007/s10958-018-3857-2
- ID: 241259
如何引用文章
详细
Let G be a connected graph on n ≥ 2 vertices with girth at least g such that the length of a maximal chain of successively adjacent vertices of degree 2 in G does not exceed k ≥ 1. Denote by u(G) the maximum number of leaves in a spanning tree of G. We prove that u(G) ≥ αg,k(υ(G) − k − 2) + 2 where \( {\alpha}_{g,1}=\frac{\left[\frac{g+1}{2}\right]}{4\left[\frac{g+1}{2}\right]+1} \) and \( {\alpha}_{g,k}=\frac{1}{2k+2} \) for k ≥ 2. We present an infinite series of examples showing that all these bounds are tight.
作者简介
D. Karpov
St. Petersburg Department of Steklov Institute of Mathematics and St. Petersburg State University
编辑信件的主要联系方式.
Email: dvko@yandex.ru
俄罗斯联邦, St. Petersburg
补充文件
