Boundary triples for integral systems on finite intervals
- 作者: Strelnikov D.1
-
隶属关系:
- Vasyl’ Stus Donetsk National University
- 期: 卷 231, 编号 1 (2018)
- 页面: 83-100
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241087
- DOI: https://doi.org/10.1007/s10958-018-3807-z
- ID: 241087
如何引用文章
详细
Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system
\( J\overrightarrow{f}(x)-J\overrightarrow{a}=\underset{0}{\overset{x}{\int }}\left(\begin{array}{cc}\uplambda dW- dQ& 0\\ {}0& dP\end{array}\right)\overrightarrow{f}(t),\kern1em J=\left(\begin{array}{cc}0& -1\\ {}1& 0\end{array}\right) \)![]()
on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.
作者简介
Dmytro Strelnikov
Vasyl’ Stus Donetsk National University
编辑信件的主要联系方式.
Email: d.strelnikov@donnu.edu.ua
乌克兰, Vinnitsya
补充文件
