Boundary triples for integral systems on finite intervals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let P, Q, and W be real functions of bounded variation on [0, l], and let W be nondecreasing. The integral system

\( J\overrightarrow{f}(x)-J\overrightarrow{a}=\underset{0}{\overset{x}{\int }}\left(\begin{array}{cc}\uplambda dW- dQ& 0\\ {}0& dP\end{array}\right)\overrightarrow{f}(t),\kern1em J=\left(\begin{array}{cc}0& -1\\ {}1& 0\end{array}\right) \)

on a finite compact interval [0, l] was considered in [6]. The maximal and minimal linear relations Amax and Amin associated with the integral system (0.1) are studied in the Hilbert space L2(W). It is shown that the linear relation Amin is symmetric with deficiency indices n±(Amin) = 2 and Amax = \( {A}_{min}^{\ast }. \) Boundary triples for Amax are constructed, and the the corresponding Weyl functions are calculated.

作者简介

Dmytro Strelnikov

Vasyl’ Stus Donetsk National University

编辑信件的主要联系方式.
Email: d.strelnikov@donnu.edu.ua
乌克兰, Vinnitsya

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018