On Integral of a Semi-Markov Diffusion Process


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let (X(t)) (t ≥ 0) be a semi-Markov diffusion process. The process (J(T )) (T ≥ 0) equal to the integral of (X(t)) on interval [0, T ) is studied. The relation between one-dimensional differential equation of the second order of elliptical type and asymptotics of a solution to Dirichlet problem on an interval with length tending to zero is established. This relation is used to derive a differential equation for the Laplace transform of the semi-Markov generating function of the process (J(t)).

作者简介

B. Harlamov

Institute of Problems of Mechanical Engineering

编辑信件的主要联系方式.
Email: b.p.harlamov@gmail.com
俄罗斯联邦, St.Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018