On Integral of a Semi-Markov Diffusion Process
- Авторлар: Harlamov B.P.1
-
Мекемелер:
- Institute of Problems of Mechanical Engineering
- Шығарылым: Том 229, № 6 (2018)
- Беттер: 782-791
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240578
- DOI: https://doi.org/10.1007/s10958-018-3718-z
- ID: 240578
Дәйексөз келтіру
Аннотация
Let (X(t)) (t ≥ 0) be a semi-Markov diffusion process. The process (J(T )) (T ≥ 0) equal to the integral of (X(t)) on interval [0, T ) is studied. The relation between one-dimensional differential equation of the second order of elliptical type and asymptotics of a solution to Dirichlet problem on an interval with length tending to zero is established. This relation is used to derive a differential equation for the Laplace transform of the semi-Markov generating function of the process (J(t)).
Авторлар туралы
B. Harlamov
Institute of Problems of Mechanical Engineering
Хат алмасуға жауапты Автор.
Email: b.p.harlamov@gmail.com
Ресей, St.Petersburg
Қосымша файлдар
