On the problem of V. N. Dubinin for symmetric multiply connected domains


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract

The problem of maximum of the functional

\( {I}_n\left(\upgamma \right)={r}^{\upgamma}\left({B}_0,0\right)\prod \limits_{k=1}^nr\left({B}_k,{a}_k\right) \)

is considered. Here, \( \upgamma \in \left(0,n\right],{a}_0=0,\kern0.5em \left|{a}_k\right|=1,k=\overline{1,n},{a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}},\kern0.5em k=\overline{0,n},\kern0.5em {\left\{{B}_k\right\}}_{k=1}^n \) are pairwise non-overlapping domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B; a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. For γ = 1 and n ≥ 2, the problem was formulated as an open problem by V. N. Dubinin in 1994. L. V. Kovalev solved the Dubinin problem in 2000. The article deals with finding the maximum of the functional In(γ) for γ > 1.

作者简介

Liudmyla Vyhivska

Institute of Mathematics of the NAS of Ukraine

编辑信件的主要联系方式.
Email: liudmylavygivska@ukr.net
乌克兰, Kyiv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018