On the problem of V. N. Dubinin for symmetric multiply connected domains
- 作者: Vyhivska L.V.1
-
隶属关系:
- Institute of Mathematics of the NAS of Ukraine
- 期: 卷 229, 编号 1 (2018)
- 页面: 108-113
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/240382
- DOI: https://doi.org/10.1007/s10958-018-3665-8
- ID: 240382
如何引用文章
详细
Abstract
The problem of maximum of the functional
is considered. Here, \( \upgamma \in \left(0,n\right],{a}_0=0,\kern0.5em \left|{a}_k\right|=1,k=\overline{1,n},{a}_k\in {B}_k\subset \overline{\mathrm{\mathbb{C}}},\kern0.5em k=\overline{0,n},\kern0.5em {\left\{{B}_k\right\}}_{k=1}^n \) are pairwise non-overlapping domains, \( {\left\{{B}_k\right\}}_{k=0}^n \) are symmetric domains with respect to the unit circle, and r(B; a) is the inner radius of the domain \( B\subset \overline{\mathrm{\mathbb{C}}} \) with respect to the point a ∈ B. For γ = 1 and n ≥ 2, the problem was formulated as an open problem by V. N. Dubinin in 1994. L. V. Kovalev solved the Dubinin problem in 2000. The article deals with finding the maximum of the functional In(γ) for γ > 1.
作者简介
Liudmyla Vyhivska
Institute of Mathematics of the NAS of Ukraine
编辑信件的主要联系方式.
Email: liudmylavygivska@ukr.net
乌克兰, Kyiv
补充文件
