Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the first-order symmetric system Jy − A(t)y = λΔ(t)y with n × n-matrix coefficients defined on an interval [a; b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfy the equality N_N+ = n. The main result is the parametrization of all pseudospectral functions σ(·) of any possible dimension n????≤ n in terms of a Nevanlinna parameter τ = {C0(λ),  C1(λ)}. Such parametrization is given by the linear-fractional transform

\( {m}_{\tau}\left(\uplambda \right)={\left({C}_0\left(\uplambda \right){w}_{11}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{21}\left(\uplambda \right)\right)}^{-1}\left({C}_0\left(\uplambda \right){w}_{12}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{22}\left(\uplambda \right)\right) \)

and the Stieltjes inversion formula for m???? (λ). We show that the matrix \( W\left(\uplambda \right)={\left({w}_{ij}\left(\uplambda \right)\right)}_{i,j=1}^2 \) has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators. The obtained results develop the results by A. Sakhnovich; Arov and Dym; and Langer and Textorius.

作者简介

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

编辑信件的主要联系方式.
Email: vadim.mogilevskii@gmail.com
乌克兰, Poltava

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018