Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the first-order symmetric system Jy − A(t)y = λΔ(t)y with n × n-matrix coefficients defined on an interval [a; b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfy the equality N_N+ = n. The main result is the parametrization of all pseudospectral functions σ(·) of any possible dimension n????≤ n in terms of a Nevanlinna parameter τ = {C0(λ),  C1(λ)}. Such parametrization is given by the linear-fractional transform

\( {m}_{\tau}\left(\uplambda \right)={\left({C}_0\left(\uplambda \right){w}_{11}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{21}\left(\uplambda \right)\right)}^{-1}\left({C}_0\left(\uplambda \right){w}_{12}\left(\uplambda \right)+{C}_1\left(\uplambda \right){w}_{22}\left(\uplambda \right)\right) \)

and the Stieltjes inversion formula for m???? (λ). We show that the matrix \( W\left(\uplambda \right)={\left({w}_{ij}\left(\uplambda \right)\right)}_{i,j=1}^2 \) has the properties similar to those of the resolvent matrix in the extension theory of symmetric operators. The obtained results develop the results by A. Sakhnovich; Arov and Dym; and Langer and Textorius.

About the authors

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

Author for correspondence.
Email: vadim.mogilevskii@gmail.com
Ukraine, Poltava

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature