Analytic in a Sector Resolving Families of Operators for Degenerate Evolution Fractional Equations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We introduce a class of pairs of operators defining a linear homogeneous degenerate evolution fractional differential equation in a Banach space. Reflexive Banach spaces are represented as the direct sums of the phase space of the equation and the kernel of the operator at the fractional derivative. In a sector of the complex plane containing the positive half-axis, we construct an analytic family of resolving operators that degenerate only on the kernel. The results are used in the study of the solvability of initial-boundary value problems for partial differential equations containing fractional time-derivatives and polynomials in the Laplace operator with respect to the spatial variable.

Авторлар туралы

V. Fedorov

Chelyabinsk State University

Хат алмасуға жауапты Автор.
Email: kar@csu.ru
Ресей, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021

E. Romanova

Chelyabinsk State University

Email: kar@csu.ru
Ресей, 129, Brat’ev Kashirinyh St., Chelyabinsk, 454021

A. Debbouche

Université 8 Mai 1945

Email: kar@csu.ru
Алжир, Guelma, 24000

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2017